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of this system will be to analyze how the parallelism inherent in program mutation
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weak program mutation agalnst program mutation. In the report we also indicate areas
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distributed mutation system if these goals are to be met.
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1. Introduction

One goal of software engineering is to find efficient 100ls which produce from a program
quantirative life cycle information which has a well-understood interpretation. Program mutation
(14, 2, 13]is such a tool. Itsgoal is to provide a measure of how well data T has tested the functuional
correctness of program P.

In program mutation a set of alternative programs M; Ma.... Mpn, called mutants, are constructed
from P and run against T. Ideally, each M, is functionally different from P -- each mutant represents a
potential error in P. Assuming P runs acceptably on T, M, failing on T indicates that P does not
contain the error represented by M,. Thus, a quantitative measure of how well P has been tested by T.
modulo the represented potential errors, is given by the percentage of failing mutants.

There have been three experimental program mutation systems built, two for testing Fortran
programs [6. 5], called FMS.1 and FMS.2, and one for testing Cobol programs [2. 1]. called CMS. 1.
The goal of each system has been to conduct experiments aimed at providing interpretations of the
mutant failure percentage -- that is, determining exactly what types of common programming errors
can cannot be detected via mutations and comparing the relative strength of program mutation
testing to the other contemporary testing methods such as symbolic execution {II.10.16] and
coverage measures [19, 18, 23). The results of these experiments have been reported in [22.2.7. 1. %]
It is noted that on these systems programs having lengths of up to 1000 statements have been tested
under experimenta) conditions. [15) represents the most comprehensive test by program mutation to
date.

All three mutation systems have approached the problem of constructing mutants by defining a set
of from 25 to 30 mutant operators. A mutant operator is a simple syntactic or semantic program
transformation such as changing a particular relational operator to one of the five other relational
operators, changing the semantics of a particular Fortran DO loop to act as an Algol FOR loop. or
changing a particular variable reference name to be one of the program’s other named vanables of
compatible type. All three mutation systems have implemented only first-order mutations which
come from a single application of a mutant operator on the program P Anafysis has shown that the

number of mutants generated by these systems is on the order of N where N s the number of
statements in P? [22. 8].

The method of mutant operations was chosen because 1t is conceptually simple and eas\ to

?In section 311 will be explainec how the compilation of N? mutants 1s avoided - only the program P need be compiled
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implement. However, using general program transformations introduces a new problem -- the
generation of mutants which are functionally equivalent to the given program P. These equivalent
mutants are a nuisance since they add no power to the mutant test and thus must be diligentiy
accounted for during experiments. Furthermore, during some experiments as many as 1077 of the
mutants have turned out to be equivalent. A method to automatically detect some types of equivalent
mutants, based on compiler optimization techniques. has been designed but it has vet to be
implemented {4].

The experiments run on these three prototype program mutation systems have shown that the
method will uncover virtually all errors detected by contemporary testing methods and have further
shown that program mutation has the potential to detect some errors which are overlooked by all
other methods. However, due 1o the relatively large number of mutants generated it remains to be
seen whether or not the method can be implemented efficiently enough to be put into a production

environment. This is further aggravated by the above equivalent mutants problem.

2. Potential Speed-Up Methods
All current program mutation systems execute mutants in their entirety on test data. For test data
T consisting of n test cases 1;.12.....1n. the program P is first executed to produce corresponding output
0:.0,.....05. In functional notation. O, = P(l)). A mutant M, is said to fail if for any test case 1. either
M, has a run-time exception or Mi(1.) is different from P(l,). The main loop of current mutation
systems is illustrated in figure 2-1. Details will be given in section 3.
In this report we will discuss how the mutation test can potentially be more efficientls implemented
by overviewing the design of a new prototype program mutation system which radically differs from
P

all previous systems. Rather than tackle a new language. we will concentrate on performing program

mutation on Fortran programs. The following four potential speed-up factors will be ncorporated.

2.1. Distributed Computation

Figure 2-1 illustrates the sequential nature of current program mutation svstems. However. there is
nothing inherently sequential in the method. Indeed. the nature of mutation analysis in which several
mutants are independently run against test data suggests that the method is a "natural” for distributed
computing. For a distributed system with r processors. one can conceive of routing mutants and test
data to free processors with a potential speed-up factor of r. The method is particularly suited to focal
area networks of personal machines [20].

The detailed design of a prototype distributed program mutation system should focus on the

communication issues related to realizing as close as possible the potential r speed-up factor afforded
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by distributed computing. An overview of the system design and an implementation strategy will be

given in sections 4 and 5.

2.2. Automatically Detecting Equivalent Mutants

Figure 2-1 illustrates the computational waste of equivalent mutants. Assume that M, is not
equivalent to P and that M; will fail on some 1. As soon as M, fails it is never again executed.
However, if M; is equivalent to P then M; will be executed on each 1, since M, can never fail”.

In a production system virtually all equivalent mutants must be automatically detected for reasons
other than efficiency: if equivalent mutants are not accounted for, then the interpretation of the
mutant failure percentage can be misleading. Furthermore, it has been observed that manuallyv
detecting equivalent mutants can require large amounts of human effort [2.15). and manual
detection of equivalent mutants is an error-prone human activity which again can lead to
misinterpretation of the mutant failure percentage.

The design of our prototype distributed system will incorporate the detection method designed in
[4). To experiment on how well the method works and to improve the method one would use a data
base of programs with known equivalent mutants as has been collected in {9,7). It has been
estimated that as many as 95% of the equivalent mutants can be detected automatically [1.8]. Aside
from improving this figure, experiments could suggest strategies to help manually detect the

remaining small number of equivalent mutants.

2.3. Partial Mutant Execution

As stated above and illustrated in figure 2-1, the current mutation systems execute mutants in their
entirety on test data. In the design of the prototype distributed system we will incorporate an
execution time saving feature of commencing mutant execution at the point of mutation.

The method can best be illustrated through a straight line program. Assume P is an N statement
straight line program with statements S1.S2.....Sx. Let T be a test case for P with input ] and output
O. Let D represent all data variables accessed by P and denote by D; the state of D after S, has been
executed. Figure 2-2 illustrates this notation. Then if mutant M, affects statement Sy but doesn't
affect statements S$;.Sz.....Sk-1 we can, without loss of generality. begin the execution of M, with data
state Dx-; at mutated statement Si.

The major obstacle to be overcome in implementing this speed-up method lies in how to store and

3An equivalent M, could 1ail due to a runume exception Experience indicates that this s extremely rare
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retrieve P’s intermediate data values. The straight-line program example illustrates some issues and
ideas to explore in designing the prototype distributed system. Clearly storing Dy,...Dn would work
but would require a factor of N additional storage. However, it is easy to see that if the values
computed by the S's (rather than the D’s) are stored in a reversed linked-list fashion, then Dy can be
constructed without executing S1,S,,...,Sx. This approach can be extended to tree and acyclic graph
programs, but breaks down for arbitrary program structures.

It has been shown that a large variety of program structures, usually restricted to intraprocedure
analysis, can be reduced to the above three forms [17]. In the prototype distributed program
mutation system we will explore using the above techniques at the node level of the reduced flow
graph representation of Fortran subroutines. We will also need to construct and use the procedure
call graph as defined in {17). It might be necessary to commence mutant execution in the calling
ro: e for test cases which cause subroutines to be called many times,

There is another saving of execution time that can be realized with the above method of
commencing mutant execution at the point of mutation. Referring again to figure 2-2, assume
mutant M, affects statement Sy but doesn't affect any other statements.* Then we not only can begin
execution of M; at mutated statement Sy but we can, without loss of generality, terminate the
execution of M; after executing mutated S, providing the Dy data state of the mutant matches the Dy
data state of the program P -- M; cannot fail. The case where the data states are unequal will be
discussed in the next subsection.

In the detailed design of the distributed mutation system, one should instrument measurement
techniques in an effort to estimate how much of a saving is being realized due to partial mutant

execution,

2.4. A "Weak” Mutstion Option

It was seen above that mutants can be terminated at the point of mutation provided the mutant’s
data state matches the program’s at that point. If they don't match, however, the mutant cannot be
terminated and marked as failing since at some later point in its execution its data state could return
to match the program’s.

1t would be unwise to continuously monitor a mutant’s data state to see if it has returned to match

*In the current program mutation systems most, but not all, of the generated mutants have this property




the program since we intuitively feel that such returns are rare.® Marking 2 mutant as failing if 1

doesn't match the program at the point of mutation will be called weak program muation. Two
things are clear about weak program mutation: 1) it can be implemented much more efficientlv than
program mutation, and 2) it cannot give more information on the correctness of a program than
program mutation. What is not clear is how much weaker is weak program mutation than program
mutation.

A prototype distributed program mutation system should have weak program mutation as an
option. This would allow one to conduct experiments on the above question. The experiments would
be of a "beat the system” nature [7] in which a subject takes programs with known errors and tries to
develop test data on which the program doesn’t fail but on which all mutants of the program fail.
Initially, the same programs which have been used in beat the system experiments on program
mutation [9] should be used for beat the system experiments on weak program mutation. This will
allow a comparison of program mutation and weak program mutation on known results. Later. the
improved efficiency of the prototype distributed mutation system would allow one to conduct

experiments on programs of much larger size.

3. Design Overview of Current Mutation Systems
The three existing program mutation systems all have the same basic design [6.5]. There are six

major modules:

I. A parser -- the program to be tested is parsed into an internal form which is suitable for
program mutation.

2. An Interpreter -- executes internal form representations of programs and mutanis
Detects various run-time failure exceptions.

3. A Test Case Manager -- controls execution of the program on the test data and records
the output of the program.

4. A Mutant Generater -- applies the mutant operators to the program to generate mutant
descriptors which indicate what changes to the internal form constitute a mutation

5. A Mutant Manager -- uses the mutant descriptions to create mutants by altering the
internal form, controls execution of the mutants on the test data. and maintains tables
which indicate the failure status of mutants.

6. A Report Generater -- creates a printable summary of the testing run.

From the descriptions of these modules it can be seen that there are four major data structures in

Sntuitively. \f a mutant will return to match the program then 1t wili do so auickly - within the next few statements This fe
in nicely with the reduced flow graph node-leve! method o' partial mutant execution outhn. ¢ above




current mutation systems:

!. The internal form representation of the program,
2. The test cases and the program’s output on them,
3. The mutant descriptors, and
4. The mutant status tables.
A testing run on current mutation systems can be broken down into three relatively independent

phases:

I. Phase 1 -- The program is parsed, the program is executed on the test data. and the
mutant descriptors are generated.

2. Phase 2 -- The mutants are executed on the test data.
3. Phase 3 -- The repcrt is generated.

Figure 3-1 summarizes the design and how testing runs are done on the current program mutation
systems in terms of the components described above. Note that in testing a program P. the svstems
allow the test data to be augmented without redoing what has been previously done in phase !
Furthermore, the user has the option of applying the mutant operators incrementally from runto run
rather than dealing with zll mutants from the outset. There are three places indicated in figure 3-J
where a testing run may start;

(A) Start point for the first testing run.

(B) Start point for subsequent runs involving new test data,
and possibly the application of more mutant operators.

(C) Star: point for subsequent runs involving no new
test data but applying more mutant operators.
4. Design Overview of the Prototype Distributed Mutation System
The prototype distributed mutation system will still have the three phases of current mutation
systems. Implementing the ideas of section 2 will require some new components as well as major

design overhzuls to some existing components. There will be two new components:
1. A Program Flow Graph -- this data structure will indicate where and how partial mutant
execution can be dene. 1t will also indicate the basic blocks of the program.

2. An Equivalence Tester -- this module will use the basic block information of the
program flow graph to mark mutant descriptors as equivalent.

Five components of existing mutation systems need substantial revisions. They are:

1. The Parser — the program flow graph wili be generated by the parser.

2. The Internal Form -- the internal form representation of the program will now include
the program flow g-aph.
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3. The Test Case Manager -- in order to do partial mutant execution it will be necessary for
the test case manager to record data state information on the program at the points
indicated by the flow graph.

4. The Test Cases -- :n addition to the input; output information, the test cases will now
contain the intermediate information necessary for partial mutant execution.

5. The Mutant Manager -- the mutant manager will now control partial execution of
mutants, both in starting mutant execution at the point of mutation and in ending
mutant execution :mmediately thereafter in the case of weak program mutation. In
addition. the mutant manager will control the parallel execution of mutants. The
distributed aspects of the mutant manager will be elaborated below.

The phase | design ove-view of the prototype distributed svstem is illustrated in figure 4-1. Note
that we could have “parallelized” phase | to take advantage of a distributed system. We choose 1o
avoid the complexities of doing so because the execution time spent in phase 1 is insignificant with
respect to the execution *“me spent in phase 2.

To describe the distributed aspects of the prototype distributed system,. we will use the standard
parallel processing abstraction terms of process, message passing. father process, and son process. in
order to describe the design structure independently of any particular system architecture. An
implementation strategy will be described in the next section.

The mutant manager will be a father process capable of creating, managing. and communicating
with an arbitrary number of identical son processes called mutant executers. The mutant manager
will exist for the duration of phase 2 but the mutant executers may come and go. The mutant
executers operate independently of each other. don't communicate with each other, and don't know
or care about the existance of other mutant executers. The only communications are between the
mutant manager and the mutant executers. Figure 4-2 illustrates this process structure.

Upon creation, a mutant executer will contain code for communicating with the mutant manager,
the internal form representation of the program, and the interpreter. These components remamn
resident for the entire existance of a mutant executer. After creation, the mutant manager passes 10
the mutant executer one test case which will be resident in the executer for quite some time  This 1s
done for two reasons: the test case can constitute much data and we wish to mimme
communications, and we want the mutant executer to "selt-optimize” itself for executing a particular
test case and this will be a time consuming activity.

After these two steps the mutant executer is ready to create and execute mutants  For simphcity,
this will be done one mutant at a time -- the mutant manager will pass a mutant de«criptor to the

mutant executer and then wait for a message indicating whether or not the mutant has falled Note

that all communicaticn between the manager and the cxecuter will be of a
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command-acknowledgement nature. In addition, the manager can also expect messages from the

executer such as "l am about to cease to exist”.

5. An Implementation Strategy

The implementation of the prototype distributed mutation system can be done in three successive
stages, cach building on the former with the first stage building on the current FMS.2 program
mutation system. The completion of stage one would permit the performance of the experiments on

weak program mutation which were outlined in section 2.

S§.1. Stage 1
During this stage FMS.2 would be modified to implement the equivalence tester and partial mutant
execution. The necessary changes were summarized in section 4. There will be no introduction of

parallelism during stage 1.

5.2. Stage 2

During this stage the mutant manager, the mutant executer, and the communication mechanism
between them would be built and the system would evolve toward being of a distributive nature.
Depending on the available facilities, it mught not be necessary to actually use or simulate distributed
hardware during this stage. For example, a DEC-2060 running the TOPS-20 operating system [12] is
particularly suited for building tae :ype o: distributed system which we have described since it
supports a tree-structured hierarct. f isynchronous processes, and interprocess message passing.
Thus ir stage 2 it is recommended that the prototype distributed mutation system be built on a single
processor machine under an ops:ating system which supports in software a realistic version of

distributed computation.

5.3, Stage 3

During this stage any artificiality in the distributed mutation system can be removed by converting
it to run on a multiprocessor system. There are several such systems currently available. For
example, at Yale there arz two DEC-2060's connected via an Ethernet-like [20] local area network
called Chaosnet [21]. Building the prototype mutation system on this network would allow an
examination of the communication issues involved in running mutant executers on different
processors.

Unfortunately, for the above network of two DEC-2060s, the mutant manager would be on the

same machine as one of the mutant executers. The artificiality that this imposes will be minimal since
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the mutant manager will be dormant most of the time. However, even this small degree of artificiality

can be avoided if one has available a local area network consisting of many powerful personal

computers such as the recently announced Apollo machine {3).
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